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Introduction

� The efficient implementation of collective communication
is a challenging design effort

� Very important to guarantee scalability of barrier
synchronization, broadcast, gather, scatter, reduce, etc.

� Essential to implement system primitives to enhance
fault-tolerance.

� Software or hardware support for multicast communication
can improve the performance and resource utilization of a
parallel computer

� Software multicast: based on unicast messages, simple
to implement, no network topology constraint, slower

� Hardware multicast: require dedicated hardware,
network dependent, faster
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Introduction

� Some of the most powerful systems in the world use the
Quadrics interconnection network and the collective
communication services analyzed in this job:

� The Terascale Computing System (TCS) at the
Pittsburgh Supercomputing Center – the second most
powerful computer in the world
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Introduction

� Some of the most powerful systems in the world use the
Quadrics interconnection network and the collective
communication services analyzed in this job:

� The Terascale Computing System (TCS) at the
Pittsburgh Supercomputing Center – the second most
powerful computer in the world

� ASCI Q machine, currently under development at Los
Alamos National Laboratory (30 TeraOps, expected to
be delivered by the end of 2002)
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Quadrics Network Design Overview

� QsNET provides an abstraction of distributed virtual shared
memory

� Each process can map a portion of its address space into the
global memory

� These address spaces constitutes the virtual shared memory

� This shared memory is fully integrated with the native
operating system

� Based on two building blocks:

� a network interface card called Elan

� a crossbar switch called Elite

Collectives
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Elite

� 8 bidirectional links with 2 virtual channels in each
direction

� An internal 16x8 full crossbar switch

� 400 MB/s on each link direction

� Packet error detection and recovery, with routing and data
transactions CRC protected

� 2 priority levels plus an aging mechanism

� Adaptive routing

� Hardware support for broadcast
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Network Topology: Quaternary Fat-Tree
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Network Topology: Quaternary Fat-Tree
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Network Topology: Quaternary Fat-Tree
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Packet Format

transaction type

context

memory address

data

CRC

CRC

routing tags

packet header

route one or more transactions EOP token

� 320 bytes data payload (5 transactions with 64 bytes each)

� 74-80 bytes overhead
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Programming Libraries

� Elan3lib

� event notification

� memory mapping and allocation

� remote DMA

� Elanlib and Tports

� collective communication

� tagged message passing

� MPI, shmem User  Applications

user space

kernel space system calls elan kernel comms

elan3lib

elanlib
tport

mpishmem
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Collective communication on the QsNET

Broadcast tree for a 16-node network
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Collective communication on the QsNET
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Collective communication on the QsNET

Serialization through the root switch to avoid deadlocks
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Collective communication on the QsNET
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Collective communication on the QsNET

Deadlocked situation
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Barrier Synchronization

QsNET implements two synchronization primitives:

� Software-based: it uses a balanced tree and point-to-point
messages

�

elan_gsync()

� Hardware-based: it uses the hardware multicast support

�

elan_hgsync(): busy-wait

�

elan_hgsyncevent(): event-based
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Software-Based Barrier
Each process waits for ’ready’ signals from its children
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Software-Based Barrier
Each process waits for ’ready’ signals from its children (1) ...

(1)

Root Node

(1) (1) (1)

10

0

5 9 13

12 14 1511876432

1

Hardware- and Software-Based Collective Communication on the Quadrics Network – p.27



Software-Based Barrier
... and sends its own signal up to the parent process (2)
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Hardware-Based Barrier

Example for 16 nodes
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Hardware-Based Barrier

(1) init barrier, (2) update sequence #, (3) wait

Init barrier
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Hardware-Based Barrier

test sequence #

Multicast transaction
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Hardware-Based Barrier

return OK or FAILfinish barrier

Acknowledgment
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Hardware-Based Barrier

finish barrier

Final ’EOP’ (End-Of-Packet) token
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Broadcast
QsNET implements two broadcast primitives:

� Software-based: it uses a balanced tree and point-to-point
messages

�

elan_bcast()

� Hardware-based: it uses the hardware multicast support

�

elan_hbcast()

� Both implementations perform an initial barrier to
guarantee resources allocation
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Performance Analysis

� The experimental results are obtained on a 64-node cluster
of Compaq AlphaServer ES40s running Tru64 Unix.

� Each Alpahserver is attached to a quaternary fat-tree of
dimension three through a 64 bit, 33 MHz PCI bus using
the Elan3 card.

� In order to expose the real network performance, we place
the communication buffers in Elan memory.

� We present:

� unidirectional ping results, as a reference, and

� barrier and broadcast results, analyzing the effect of
additional background traffic

Hardware- and Software-Based Collective Communication on the Quadrics Network – p.35



Unidirectional Ping
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�

Peak data bandwidth (Elan to Elan) of 335 MB/s � 396 MB/s (99% of nominal

bandwidth)

�

Main to main asymptotic bandwidth of 200 MB/s
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�

Latency of 2.4 �s up to 64-byte messages (Elan to Elan memory)

�

Higher MPI latency due to message tag matching
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Barrier Synchronization
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Good hardware barrier scalability
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Barrier Synchronization with Background Traffic
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�

Software barrier significantly affected (the slowdown is 40 in the worst case)

�

Little impact on the hardware barriers, whose average latency is only doubled
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Hardware Barrier with Background Traffic
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�

94% of the operations take less than 9 �s with no bakground traffic

�

93% of the tests take less than 20 �s with uniform traffic
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Software Barrier with Background Traffic
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�

99% of the barriers take less than 30 �s with no bakground traffic

�

93% of the synchronizations complete with less than 605 �s with uniform traffic
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Broadcast Bandwidth
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�

Asymptotic bandwidth of 288MB/s when using Elan memory for both

implementations
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Broadcast Latency
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�

Hardware latency with Elan buffers below 13 �s for messages up to 256 bytes

�

Software latencies are 3.5 �s higher than hardware latencies
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Broadcast Scalability
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�

No significant effect when using buffers in main memory

�

With buffers in Elan memory performance depends on the number of switch

layers traversed
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Broadcast with Background Traffic
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Broadcast with Background Traffic
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�

Latency differences between hw and sw implementations increase

�

Better performance with buffers in main memory (due to the background traffic

application)
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Broadcast with Background Traffic
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�

Significant performance degradation for all the alternatives
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Conclusions

� Hardware-based synchronization takes as little as 6 �s on a
64-node Alphaserver cluster, with very good scalability.

Good latency and scalability are achieved with the
software-based synchronization too, which takes about
15 s.

The hardware barrier is almost insensitive to background
traffic, with 93% of the synchronizations completed in less
than 20 s.

With the broadcast, both implementations can deliver a
sustained bandwidth of 288 MB/s Elan memory to Elan
memory and 200 MB/s main memory to main memory.
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